Indian Statistical Institute

Midterm Examination 2018-2019

B.Math Third Year Complex Analysis September 10, 2018 Instructor : Jaydeb Sarkar Time : 3 Hours Maximum Marks : 100

(i) \mathcal{D} = a domain in \mathbb{C} . (ii) $B_r(z_0) := \{z \in \mathbb{C} : |z - z_0| < r\}$. (iii) $C_r(z_0) := \partial B_r(z_0)$. (iv) $Hol(U) = \{f : U \to \mathbb{C} \text{ holomorphic }\}$. (v) $Cont(U) = \{f : U \to \mathbb{C} \text{ continuous }\}$. (vi) $\mathbb{D} = B_1(0)$.

- (1) (10 marks) Let $f \in Hol(\mathbb{D}) \cap Cont(\overline{\mathbb{D}})$. Suppose that |f(z)| is constant for all $z \in \partial \mathbb{D}$. Prove that f must have a zero in \mathbb{D} .
- (2) (10 marks) Show that if f is a non-constant entire function, then $f(\mathbb{C})$ is dense in \mathbb{C} .
- (3) (10 marks) Let $\{f_n\}_{n\geq 1} \subseteq Hol(\mathcal{D})$ be a sequence of holomorphic functions which converges uniformly on every compact subset of \mathcal{D} . Show that the sequence of derivatives $\{f'_n\}_{n\geq 1}$ also converges uniformly on every compact subset of \mathcal{D} .
- (4) (10 marks) Compute the radius of converges of the power series $\sum_{n=0}^{\infty} a_n (z+2)^n$ where

$$\sum_{n=0}^{\infty} z^n = \sum_{n=0}^{\infty} a_n (z+2)^n,$$

for all $z \in \mathbb{D}$.

(5) (10 marks) Does there exist a function $f \in Hol(\mathbb{D})$ such that

$$f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{n^3},$$

for all $n \ge 1$?

(6) (10 marks) Let $m \in \mathbb{N}$ and $z_0 \in \mathbb{C}$. Suppose that $f, g \in Hol(B_e(z_0)), g(z) \neq 0$ and $f(z) = (z - z_0)^m g(z)$ for all $z \in B_e(z_0)$. Compute

$$\frac{1}{2\pi i}\int_{C_1(0)}\frac{f'(z)}{f(z)}dz$$

- (7) (15 marks) Let $u(x, y) = x^2 y^2 2xy 2x + 3y + 5$, $(x, y) \in \mathbb{R}^2$. Prove that u is a harmonic function and find a harmonic conjugate of u.
- (8) (15 marks) Let $\{f_n\}_{n\geq 1} \subseteq Hol(\mathbb{D}) \cap Cont(\overline{\mathbb{D}})$. If $\{f_n\}_{n\geq 1}$ converges uniformly to a function f on $\partial \mathbb{D}$, then prove that f can be extended to a function \tilde{f} on $\overline{\mathbb{D}}$ which is analytic on \mathbb{D} .
- (9) (15 marks) Let $f : \mathbb{D} \to \mathbb{C}$ be a function. If $f^2, f^3 \in Hol(\mathbb{D})$, then prove that f is analytic.